𝐻(𝑠) or 𝐻(π‘—πœ”) is the frequency-dependent ratio of a circuit’s output signal (voltage/current) to its input signal, found by transforming the circuit to the s-domain (Laplace) or frequency domain (π‘—πœ”) to analyze how it modifies amplitude and phase, crucial for designing filters and control systems by revealing characteristics like gain and phase shifts.Β 

Key Concepts 

  • Definition: H(s)=Output Signal(s)Input Signal(s)cap H open paren s close paren equals the fraction with numerator Output Signal open paren s close paren and denominator Input Signal open paren s close paren end-fraction𝐻(𝑠)=Output Signal(𝑠)Input Signal(𝑠) (Laplace Domain) or H(jΟ‰)=Output PhasorInputPhasorcap H open paren j omega close paren equals the fraction with numerator Output Phasor and denominator cap I n p u t cap P h a s o r end-fraction𝐻(π‘—πœ”)=Output PhasorπΌπ‘›π‘π‘’π‘‘π‘ƒβ„Žπ‘Žπ‘ π‘œπ‘Ÿ (Frequency Domain).
  • Domain Transformation: Use the Laplace transform to convert time-domain circuits (with resistors, capacitors, inductors) into the s-domain, replacing Vcap V𝑉 with V(s)cap V open paren s close paren𝑉(𝑠), Icap I𝐼 with I(s)cap I open paren s close paren𝐼(𝑠), Rcap R𝑅 with Rcap R𝑅, Lcap L𝐿 with sLs cap L𝑠𝐿, and Ccap C𝐢 with 1/(sC)1 / open paren s cap C close paren1/(𝑠𝐢).
  • Linear Time-Invariant Systems (LTI): Transfer functions strictly apply to linear, time-invariant circuits, where components behave consistently over time. 

How It Works (Example) 

  1. Identify Input/Output: Pick the input voltage (Vincap V sub i n end-sub𝑉𝑖𝑛) and output voltage (Voutcap V sub o u t end-subπ‘‰π‘œπ‘’π‘‘) for the desired relationship.
  2. Transform to s-Domain: Convert the circuit components (R, L, C) and apply the Laplace transform to voltages and currents.
  3. Solve the Ratio: Use circuit analysis techniques (like voltage dividers or node equations) to find Vout(s)cap V sub o u t end-sub open paren s close parenπ‘‰π‘œπ‘’π‘‘(𝑠) in terms of Vin(s)cap V sub i n end-sub open paren s close paren𝑉𝑖𝑛(𝑠).
  4. Form the Function: Divide Vout(s)cap V sub o u t end-sub open paren s close parenπ‘‰π‘œπ‘’π‘‘(𝑠) by Vin(s)cap V sub i n end-sub open paren s close paren𝑉𝑖𝑛(𝑠) to get H(s)=Vout(s)Vin(s)cap H open paren s close paren equals the fraction with numerator cap V sub o u t end-sub open paren s close paren and denominator cap V sub i n end-sub open paren s close paren end-fraction𝐻(𝑠)=π‘‰π‘œπ‘’π‘‘(𝑠)𝑉𝑖𝑛(𝑠).
  5. Analyze Frequency Response: Substitute s=jΟ‰s equals j omega𝑠=π‘—πœ” (where Ο‰omegaπœ” is frequency) to get H(jΟ‰)cap H open paren j omega close paren𝐻(π‘—πœ”), then plot its magnitude |H(jΟ‰)|the absolute value of cap H open paren j omega close paren end-absolute-value|𝐻(π‘—πœ”)| (gain) and phase ∠H(jΟ‰)angle cap H open paren j omega close paren∠𝐻(π‘—πœ”) versus Ο‰omegaπœ”. 

Applications 

  • Filtering: Design low-pass, high-pass, band-pass, or notch filters to select or reject specific frequencies.
  • Control Systems: Analyze system stability and performance in power supplies, amplifiers, and other dynamic systems.
  • System Characterization: Understand how a circuit’s gain and phase change with input frequency. 

Leave a Reply