π»(π ) or
π»(ππ) is the frequency-dependent ratio of a circuit’s output signal (voltage/current) to its input signal, found by transforming the circuit to the s-domain (Laplace) or frequency domain (ππ) to analyze how it modifies amplitude and phase, crucial for designing filters and control systems by revealing characteristics like gain and phase shifts.Β
Key Concepts
- Definition:
H(s)=Output Signal(s)Input Signal(s)cap H open paren s close paren equals the fraction with numerator Output Signal open paren s close paren and denominator Input Signal open paren s close paren end-fractionπ»(π )=Output Signal(π )Input Signal(π ) (Laplace Domain) or
H(jΟ)=Output PhasorInputPhasorcap H open paren j omega close paren equals the fraction with numerator Output Phasor and denominator cap I n p u t cap P h a s o r end-fractionπ»(ππ)=Output PhasorπΌπππ’π‘πβππ ππ (Frequency Domain).
- Domain Transformation: Use the Laplace transform to convert time-domain circuits (with resistors, capacitors, inductors) into the s-domain, replacing
Vcap Vπ with
V(s)cap V open paren s close parenπ(π ),
Icap IπΌ with
I(s)cap I open paren s close parenπΌ(π ),
Rcap Rπ with
Rcap Rπ ,
Lcap LπΏ with
sLs cap Lπ πΏ, and
Ccap CπΆ with
1/(sC)1 / open paren s cap C close paren1/(π πΆ).
- Linear Time-Invariant Systems (LTI): Transfer functions strictly apply to linear, time-invariant circuits, where components behave consistently over time.
How It Works (Example)
- Identify Input/Output: Pick the input voltage (
Vincap V sub i n end-subπππ) and output voltage (
Voutcap V sub o u t end-subπππ’π‘) for the desired relationship.
- Transform to s-Domain: Convert the circuit components (R, L, C) and apply the Laplace transform to voltages and currents.
- Solve the Ratio: Use circuit analysis techniques (like voltage dividers or node equations) to find
Vout(s)cap V sub o u t end-sub open paren s close parenπππ’π‘(π ) in terms of
Vin(s)cap V sub i n end-sub open paren s close parenπππ(π ).
- Form the Function: Divide
Vout(s)cap V sub o u t end-sub open paren s close parenπππ’π‘(π ) by
Vin(s)cap V sub i n end-sub open paren s close parenπππ(π ) to get
H(s)=Vout(s)Vin(s)cap H open paren s close paren equals the fraction with numerator cap V sub o u t end-sub open paren s close paren and denominator cap V sub i n end-sub open paren s close paren end-fractionπ»(π )=πππ’π‘(π )πππ(π ).
- Analyze Frequency Response: Substitute
s=jΟs equals j omegaπ =ππ (where
Οomegaπ is frequency) to get
H(jΟ)cap H open paren j omega close parenπ»(ππ), then plot its magnitude
|H(jΟ)|the absolute value of cap H open paren j omega close paren end-absolute-value|π»(ππ)| (gain) and phase
β H(jΟ)angle cap H open paren j omega close parenβ π»(ππ) versus
Οomegaπ.
Applications
- Filtering: Design low-pass, high-pass, band-pass, or notch filters to select or reject specific frequencies.
- Control Systems: Analyze system stability and performance in power supplies, amplifiers, and other dynamic systems.
- System Characterization: Understand how a circuit’s gain and phase change with input frequency.