
Understanding Deep Learning Errata
November 21, 2024

Much gratitude to everyone who has pointed out mistakes. If you find a problem not
listed here, please contact me via github or by mailing me at udlbookmail@gmail.com.

https://github.com/udlbook/udlbook/issues

2

Copyright ©2023 Simon Prince.

Instructions

To find which errata are relevant to your version of the book, first consult the copyright
page at the start of the book just before the dedication. The printing will be stated (e.g.,
“Second printing”) just before the line that says “Library of Congress...”. If it doesn’t
specify the printing here, then you have the first printing.

This document is organized by printing. If you have the first printing of the book, all
errata are relevant to you. If you have the second printing, then only the errata in the
sections for second and third printings are relevant. If you have the third printing, then
only the errata for the third printing is relevant and so on.

Copyright ©2023 Simon Prince.

4

Copyright ©2023 Simon Prince.

Errors

These are things that might genuinely confuse you. There is a list of more minor changes
(e.g., math symbols that are in bold but should not be, missing brackets, slight re-
phrasings, changing tiny things for consistency with other chapters) at the end of this
document.

Fourth printing (Jun 2024)

There have been only seven errors reported since February 2024 when the second printing
was submitted. The book is very stable, so don’t be put off from buying a physical copy.

• Figure 12.7 (and legend): Changed to reflect the fact that LayerNorm is applied
separately to each embedding. See figure 1.1 of this document. Text in Section
12.4 changed to “This is similar to BatchNorm but normalizes each embedding in
each batch element separately using statistics calculated across its D embedding
dimensions.”

• Figure 14.5: The precision can be computed as the proportion of real examples
samples that lie within the approximated manifold of samples real examples . Sim-
ilarly, the recall is computed as the proportion of real examples samples that lie
within the approximated manifold of samples real examples (not shown).

• Problem 15.1: What will the loss be in equation 15.9 when Pr(x∗) = Pr(x)?

• Section 16.3.1 This can be inverted in O[D2], and the log determinant is just the
sum of the log of the absolute values on the diagonals of L and D

• Section 16.3.2 (and similar changes in problem 16.9). A simple example is a piece-
wise linear function with K regions (figure 16.5) which maps [0, 1] to [0, 1] as:

f[h,ϕ] =

(
b−1∑
k=1

ϕk

)
+ (hK − b+1)ϕb, (1.1)

where the parameters ϕ1, ϕ2, . . . , ϕK are positive and sum to 1, and b = ⌊Kh⌋+1
is the index of the bin that contains h.

Copyright ©2023 Simon Prince.

6

Figure 1.1 Corrected version of figure 12.7. Transformer layer. The input consists
of a D × N matrix containing the D-dimensional word embeddings for each of
the N input tokens. The output is a matrix of the same size. The transformer
layer consists of a series of operations. First, there is a multi-head attention
block, allowing the word embeddings to interact with one another. This forms
the processing of a residual block, so the inputs are added back to the output.
Second, a LayerNorm operation is applied separately to each embedding. Third,
there is a second residual layer where the same fully connected neural network
is applied separately to each of the N word representations (columns). Finally,
LayerNorm is applied again.

• Equation 16.22:

log

[∣∣∣∣I+ ∂f[h,ϕ]

∂h

∣∣∣∣
]

= trace

[
log

[
I+

∂f[h,ϕ]

∂h

]]

=

∞∑
k=1

(−1)k−1

k
trace

[
∂f[h,ϕ]

∂h

]k
,

• Appendix B.1 Definition of surjection was wrong. Should be: A surjection is a
function where every element in the second set receives a mapping from the first
(but there may be multiple elements of the first set that are mapped to the same
element of the second set).

Second and third printings (Mar. 2024)

The book was reprinted twice around March 2024.

• Equation 6.12

Copyright ©2023 Simon Prince.

7

mt+1 ← β ·mt + (1− β)
∑
i∈Bt

∂ℓi[ϕt − αβ ·mt]

∂ϕ

ϕt+1 ← ϕt − α ·mt+1, (1.2)

• Equation 6.18:

mt+1 ← β ·mt + (1− β)
∑
i∈Bt

∂ℓi[ϕt]

∂ϕ

vt+1 ← γ · vt + (1− γ)

(∑
i∈Bt

∂ℓi[ϕt]

∂ϕ

)2

, (1.3)

• Equation 15.6

L[ϕ] = − 1

J

J∑
j=1

(
log
[
1− sig[f[x∗

j ,ϕ]]
])
−1

I

I∑
i=1

(
log
[
sig[f[xi,ϕ]]

])
(1.4)

≈ −Ex∗

[
log
[
1− sig[f[x∗,ϕ]]

]]
−Ex

[
log
[
sig[f[x,ϕ]]

]]
= −

∫
Pr(x∗) log

[
1− sig[f[x∗,ϕ]]

]
dx∗−

∫
Pr(x) log

[
sig[f[x,ϕ]]

]
dx,

• Equation 15.8

L[ϕ] = −
∫
Pr(x∗) log

[
1− sig[f[x∗,ϕ]]

]
dx∗−

∫
Pr(x) log

[
sig[f[x,ϕ]]

]
dx (1.5)

= −
∫
Pr(x∗) log

[
1− Pr(x)

Pr(x∗) + Pr(x)

]
dx∗−

∫
Pr(x) log

[
Pr(x)

Pr(x∗) + Pr(x)

]
dx

= −
∫
Pr(x∗) log

[
Pr(x∗)

Pr(x∗) + Pr(x)

]
dx∗−

∫
Pr(x) log

[
Pr(x)

Pr(x∗) + Pr(x)

]
dx.

• Equation 19.40:

r[τ it] ≈ rit + γ · v[si,t+1,ϕ].

• Section B.3.6: Definition of nullspace was ambiguous/wrong. Last line of this
section changed to: Conversely, for a landscape matrix A, the part of the input
space that maps to zero (i.e., those x where Ax = 0) is termed the nullspace of the
matrix.

• Section C.5.3: The definition of the Fréchet distance was incorrect. Changed to:

Copyright ©2023 Simon Prince.

8

DFr

[
p(x)

∣∣∣∣q(y)] =√ min
π(x,y)

[∫∫
π(x, y)|x− y|2dxdy

]
, (1.6)

where π(x, y) represents the set of joint distributions that are compatible with the
marginal distributions p(x) and q(y). The Fréchet distance can also be formulated
as a measure of the maximum distance between the cumulative probability curves.

• Equation C.32:

DKL

[
Norm[µ1,Σ1]

∣∣∣∣∣∣Norm[µ2,Σ2]
]

=

1

2

(
log

[
|Σ2|
|Σ1|

]
−D + tr

[
Σ−1

2 Σ1

]
+ (µ2 − µ1)Σ

−1
2 (µ2 − µ1)

�
�
�C
C
C

])
.

(1.7)

First printing (Dec. 2023)

These are things that might genuinely confuse you:

• Figure 4.7b had the wrong calculated numbers in it (but pattern is same). Correct
version is in figure 1.2 of this document.

• Section 6.3.1 where now the gradients are evaluated at ϕt − αβ ·mt.

• Section 7.5.1 The expectation (mean) E[fi′] of the intermediate values fi
′ is:

• Equation 15.7 The optimal discriminator for an example x̃ depends on the under-
lying probabilities:

Pr(real|x̃) = sig
[
f[x̃,ϕ]

]
=

Pr(x̃|real)
Pr(x̃|generated) + Pr(x̃|real)

=
Pr(x)

Pr(x∗) + Pr(x)
.

(1.8)
where on the right hand side, we evaluate x̃ against the generated distribution
Pr(x∗) and the real distribution Pr(x).

• Equation 15.9. First integrand should be with respect to x∗. Correct version is:

DJS

[
Pr(x∗) || Pr(x)

]
=

1

2
DKL

[
Pr(x∗)

∣∣∣∣∣∣∣∣Pr(x∗) + Pr(x)

2

]
+

1

2
DKL

[
Pr(x)

∣∣∣∣∣∣∣∣Pr(x∗) + Pr(x)

2

]
=

1

2

∫
Pr(x∗) log

[
2Pr(x∗)

Pr(x∗) + Pr(x)

]
dx∗︸ ︷︷ ︸

quality

+
1

2

∫
Pr(x) log

[
2Pr(x)

Pr(x∗) + Pr(x)

]
dx︸ ︷︷ ︸

coverage

.

Copyright ©2023 Simon Prince.

9

Figure 1.2 Corrected version of figure 4.7: The maximum number of linear regions
for neural networks increases rapidly with the network depth. a) Network with
Di = 1 input. Each curve represents a fixed number of hidden layers K, as
we vary the number of hidden units D per layer. For a fixed parameter budget
(horizontal position), deeper networks produce more linear regions than shallower
ones. A network with K = 5 layers and D = 10 hidden units per layer has 471
parameters (highlighted point) and can produce 161,051 regions. b) Network with
Di = 10 inputs. Each subsequent point along a curve represents ten hidden units.
Here, a model with K = 5 layers and D = 50 hidden units per layer has 10,801
parameters (highlighted point) and can create more than 1040 linear regions.

• Equation 15.12.

Dw

[
Pr(x)||q(x)

]
= max

f

∑
i

Pr(x = i)fi −
∑
j

q(x = j)fj

 , (1.9)

• Section 15.2.4 Consider distributions Pr(x = i) and q(x = j) defined over K bins.
Assume there is a cost Cij associated with moving one unit of mass from bin i in
the first distribution to bin j in the second;

• Equation 15.14. Missing bracket and we don’t need to use x∗ notation here. Correct
version is:

Dw

[
Pr(x), q(x)

]
= min

π[•,•]

[∫ ∫
π(x1,x2) · ||x1 − x2||dx1dx2

]
.

• Equation 15.15. Don’t need to use x∗ notation here, and second term on right
hand side should have q[x] term not Pr(x). Correct version is:

Dw

[
Pr(x), q(x)

]
= max

f[x]

[∫
Pr(x)f[x]dx−

∫
q(x)f[x]dx

]
.

Copyright ©2023 Simon Prince.

10

Figure 1.3 Corrected version of figure 19.11

• Equation 16.12 has a mistake in the second term. It should be:

f[hd,ϕ] =

(
b−1∑
k=1

ϕk

)
+ (hK − b)ϕb.

• Equation 17.34.

∂

∂ϕ
EPr(x|ϕ)

[
f[x]
]

= EPr(x|ϕ)

[
f[x]

∂

∂ϕ
log
[
Pr(x|ϕ)

]]
≈ 1

I

I∑
i=1

f[xi]
∂

∂ϕ
log
[
Pr(xi|ϕ)

]
.

• Figure 19.11 is wrong in that only the state-action values corresponding to the
current state-action pair should be moderated. Correct version above.

• Equation B.4. Square root sign should cover x. Correct version is:

x! ≈
√
2πx

(x
e

)x
.

• Appendix B.3.6. Consider a matrix A ∈ RD1×D2 . If the number of columns D2 of
the matrix is fewer than the number of rows D1 (i.e., the matrix is “portrait”),

• Equation C.20. Erroneous minus sign on covariance matrix. Correct version is:

x = µ+Σ1/2z.

Copyright ©2023 Simon Prince.

Minor fixes

These are mostly tiny changes that almost certainly won’t affect your understanding (e.g.,
math symbols that are in bold but should not be, missing brackets, slight re-phrasings,
changing tiny things for consistency with other chapters). You probably won’t even
notice them, and most people wouldn’t bother making this type of change once the book
was already published. I’m mainly listing them to stop people submitting duplicates,
and to help translators.

Fourth printing (Jun 2024)

• Chapter 1 introduction: A deep neural network (or deep network for short) is a
type of machine learning model, and when it is fitted to data, this is referred to as
deep learning. (+ other minor changes to preserve formatting)

• Chapter 1 introduction: Hence, this chapter also contains a brief primer on AI
ethics.

• Section 1.1.2 For the music classification example, the input vector might be of
fixed size (perhaps a 10-second clip) but is very high-dimensional (i.e., contains
many entries).

• Section 1.1.2 Moreover, structure is naturally two-dimensional it contains spatial
structure; two pixels above and below one another are closely related, even if they
are not adjacent in the input vector.

• Section 1.2.2 Similarly, real-world images are a tiny subset of the images that can
be created by drawing random red, green, and blue (RGB) values for every pixel.
(+ other minor changes to preserve formatting)

• Section 1.4 They may contain billions of parameters be enormous, and there is no
way we can understand how they work based on examination. (the term parameters
is not defined yet)

• Section 1.5 Why do they need so many parameters to be so large? (the term
parameters is not defined yet).

Copyright ©2023 Simon Prince.

12

• Section 2.1. Added marginal link to appendix for argmin function

• Figure 2.1 legend and three other places in this chapter Removed transpose from
parameter vector (unnecessary and confused some people).

• Figure 2.2 Parameters and line in figure 2.2d changed to ϕ0 = 0.82, ϕ1 = 0.52 as
this gives a slightly lower loss.

• Equation 2.5 Standard ϕ on left hand side changed to bold ϕ.

• Figure 3.5 The symbol Di is not defined. Added the sentence: This idea generalizes
to functions in Di dimensions.

• Section 4.4.1 Function f[•] should be bold. New version: A general deep network
y = f[x,ϕ] with K layers can now be written as

• Figure 4.6 legend: The weights are stored in matrices Ωk that pre-multiply the
activations from the preceding layer.

• Chapter 4 in notes. Lu et al. (2017) proved that there exists a network with
ReLU activation functions and at least Di + 4 hidden units in each layer that can
approximate any specifiedDi-dimensional Lebesgue integrable function to arbitrary
accuracy given enough layers.

• Chapter 5 introduction: Changed marginal link to Number Sets for consistency
with the appendix.

• Section 5.1.1 This shift in perspective raises the question of

• Section 5.2: To perform inference for a new test example x, return either the full
distribution Pr(y|f[x, ϕ̂]) or the value where this distribution is maximized.

• Section 5.3.1: We see that the least squares loss function follows naturally from the
assumptions that the predictions are (i) independent and (ii) drawn from a normal
distribution with mean µ = f[xi,ϕ].

• Section 5.3.1: We removed the denominator between the third and fourth lines, as
this is just a constant positive scaling factor that does not affect the position of the
minimum. (other minor changes to preserve formatting)

• Equation 5.12: Inner close square bracket in wrong place

ŷ = argmax
y

[
Pr(y|f[x, ϕ̂], σ2

]
.

• Section 5.3.3 However, there is nothing to stop us from treating σ2 as a learned
parameter of the modeland minimizing equation 5.9 with...

• Figure 5.10 legend. ...any vertical slice of this plot produces three values that sum
to one

Copyright ©2023 Simon Prince.

13

• Section 5.5. Clarity improved by referring to both uses of this notation. where fyi [x,ϕ]
and fk′ [x,ϕ] denote the ythi and k′th outputs of the network, respectively.

• Figure 5.12: Model distribution (a normal distribution with parameters θ = {µ, σ2}).

• Figure 5.14: here, two weighted normal distributions, dashed blue and orange
curves

• Section 6.1.2 More formally, they are convex, which means that every no chord
(line segment between two points on the surface) intersects the function lies above
the function and does not intersect it.

• Chapter 6 notes. A function is convex if colorred every no chord (line segment
between two points on the surface) intersects the function lies above the function
and does not intersect it.

• Chapter 6 notes. However, this is strange since SGD is a special case of Adam
(when β = γ = 0 β = 0, γ = 1) once the modification term (equation 6.16) becomes
one, which happens quickly.

• Problem 6.1 A surface is guaranteed to be convex if the eigenvalues of the Hes-
sian H[ϕ] are positive everywhere.

• Equation 7.7 (new label added to unlabelled equation between previous equation 7.6
and 7.7)

• Section 7.4 Now let’s consider how the loss changes when the pre-activations f0, f1, f2
change.

• Equation 7.26 (formerly, now eq 7.27). Activation should be bolded:

fk = βk +Ωkhk

= βk +Ωka[fk−1],

• Section 7.5.1 where f h represents the pre-activations

• Section 7.5.1 where h represents the activations, Ω, and β represent the weights
and biases, and a[•] is the activation function.

• Section 7.5.1 Assuming that the input distribution of pre-activations fj at the
previous layer is symmetric about zero

• Equations 7.29 and 7.30 + nearby text. Added subscript to variance so σ2
f ′ → σ2

f ′
i
.

• Problem 7.6. Equation number added.

• Section 8.1 This is better than the chance error rate of 90% error rate but far worse
than for the training set;

Copyright ©2023 Simon Prince.

14

• Section 8.2 To make this easier to visualize, we revert to a 1D linear least squares
regression problem

• Section 8.2.2 They combine additively for linear regression tasks with a least squares
loss. However, their interaction can be more complex for other types of problems

• Section 8.3 there is nothing we can do to circumvent this, and it represents a
fundamental limit on expected model performance

• Section 8.3.3: For a fixed-size training dataset, the variance term typically increases
as the model capacity increases.

• Section 8.4.1: Rephrased sentence to avoid potential ambiguity: Second, the test
performance continues to improve with capacity even when this exceeds the point
where the training data are all classified correctly.

• Figure 8.10. Legend. Training and test loss erroron MNIST-1D... The training
and test loss errordecreases to zero... Depending on the loss function, the model,
and the amount of noise in the data

• Section 9.1 We seek the parameters ϕ̂ that minimize minimum of the loss func-
tion L[ϕ] :

• Section 9.1 where g[ϕ] is a function which that returns a scalar that takes alarger
values when the parameters are less preferred

• Figure 9.2 legend: L2 regularization in simplified network with 14 hidden units.

• Figure 9.2 legend: For large λ (panels e–f), the regularization term overpowers
the likelihood term, so the fitted function is too smooth and the overall the fitted
function is smoother than the ground truth, so the fit is worse.

• Section 9.2.1: (see notes “Implicit regularization in gradient descent” at end of
chapter)

• Section 9.2.2: if the model is over-parameterized, then it may fit all the training
data exactly, so each all of these gradient terms will all be zero at the global
minimum.

• Section 9.3: We’ve seen that adding explicit regularization terms encourages the
training algorithm to find a good solution by adding extra terms to the loss function.

• Section 9.3.1: The model is trained once, the performance on the validation set
is monitored every T iterations, and the associated parameters models are stored.
The stored parameters models where the validation performance was best are is
selected.

• Section 9.3.3 This makes the network less dependent on any given hidden unit
and encourages the weights to have smaller magnitudes so that the change in the
function due to the presence or absence of any specific hidden the unit is reduced.

Copyright ©2023 Simon Prince.

15

• 9.3.3 Dropout randomly clamps a random subset (typically 50%) of hidden units
to zero at each iteration of SGD.

• 9.3.3. When several units conspire in this way, eliminating one (as would happen in
dropout) causes a considerable change to the output function in that is propagated
to the half-space where that unit was active

• Section 9.3.5 The maximum likelihood approach is generally overconfident; in the
training phase it selects the most likely parameters during training and uses these
to make predictions and bases its predictions on the model defined by these.

• Chapter 9 Notes Notably missing from the discussion in this chapter is BatchNorm
at and its variants

• Chapter 10 and 11 (multiple places) zero padding → zero-padding

• Section 10.2.5 If we only apply a single convolution, information will likely in-
evitably be lost;

• Section 10.2.5 If the incoming layer has Ci channels and we select a kernel size K
per channel, the hidden units in each output channel are computed as a weighted
sum over all Ci channels and K kernel entries positions using a weight matrix Ω ∈
RCi×K and one bias. Hence, if there are Co channels in the next layer, then we
need Ω ∈ RCi×Co×K weights and β ∈ RCo biases.

• Figure 10.7 legend: The MNIST-1D input has dimension Di = 40. The first con-
volutional layer has fifteen channels, kernel size three, stride two, and only retains
“valid” positions to make a representation hidden layer with nineteen positions
and fifteen channels. The following two convolutional layers have the same set-
tings, gradually reducing the representation size at each subsequent hidden layer.

• Section 10.4.3 Combined with a bias and activation function, it is equivalent to
running the same fully connected network on the input channels at every position.

• Section 10.6 As the network progresses a data example passes through the net-
work, the spatial dimensions usually decrease by factors of two, and the number of
channels increasesby factors of two.

• Chapter 10 Notes p183. However, the ConvolutionOrthogonal initializer (Xiao et
al., 2018a) is specialized for convolutional networks (Xiao et al., 2018a).

• Chapter 10 Notes p184 (Lin et al., 2017b) Lin et al. (2017b), (Redmon et al., 2016)
Redmon et al. (2016).

• Problem 10.4 Write out the equation for a 1D convolution with kernel size seven,
dilation rate of three, and stride of three. You may assume that the input is padded
with zeros at positions x−2, x−1 and x0

Copyright ©2023 Simon Prince.

16

• Problem 10.6. Draw a 12×6 6×12 weight matrix in the style of figure 10.4d
relating inputs x1, . . . , x6 to outputs h1, . . . , h12 in the multi-channel convolution
as depicted in figures 10.5a–b.

• Problem 10.7. Draw a 6×12 12× 6 weight matrix in the style of figure 10.4d
relating inputs h1, . . . , h12 to outputs h′

1, . . . , h
′
6 in the multi-channel convolution

in figure 10.5c.

• Problem 10.15 Show that the weight matrix for 1D convolution with kernel size
three and stride two is equivalent to composing the matrices for 1D convolution
with kernel size three and stride one and this sampling matrix.

• Problem 10.17 What is the receptive field size at each of the first three layers of
AlexNet (i.e., the first three orange blocks in figure 10.16)?

• Chapter 11 Introduction: The previous chapter described how image classification
performance improved as the depth of convolutional networks was extended from
eight layers (AlexNet) to eighteen nineteen layers (VGG).

• Section 11.1.1 In principle, we can add as many layers as we want, and in the
previous chapter, we saw that adding more layers to a convolutional network does
improve performance; the VGG network (figure 10.17), which has eighteen nineteen
layers, outperforms AlexNet (figure 10.16)...

• Section 11.1.1 When we change the parameters that determine f1, all of the deriva-
tives in this sequence can change are evaluated at slightly different locations since
layers f2, f3, and f4 are themselves computed from f1.

• Section 11.2 Rephrased for clarity. A complementary way of thinking about this
residual network is that it creates sixteen paths with differing numbers of transfor-
mations between input and output of different lengths from input to output.

• Section 11.4.1 Hence, it both creates redundancy in the weight parameters weights
and biases and

• Section 11.5.1 Rephrasing of fourth and fifth sentences to emphasize that these
changes happen between ResNet blocks. New version: The resolution is decreased
between adjacent ResNet blocks using convolutions with stride two. Channels are
similarly added by either appending zeros to the representation or applying an
extra 1×1 convolution.

• Section 11.5.2 Concatenation across the downsampling makes no sense since the
representations have different spatial sizes.

• Chapter 11 Notes p202. A second ReLU function was applied after this block was
added back to the main representation. This architecture was termed ResNet v1.

• Chapter 11 Notes p203. (networks for processing sequences, in which the previous
output is fed back as an additional input as we move through the sequence (see
figure 12.19)

Copyright ©2023 Simon Prince.

17

• Problem 11.2 How many paths of each length would there be if with (i) three
residual blocks and (ii) five residual blocks? Deduce the rule for K residual blocks.

• Section 12.2 Rephrasing to avoid potential ambiguity. A self-attention block sa[•]
takes N inputs x1, . . . ,xN , each of dimension D× 1, and returns N output vectors
of the same size, outputs each of which is also of size D × 1.

• Section 12.2.1 This computation scales linearly with the sequence length N , so
it needs fewer parameters than a fully connected network relating all DN inputs
to all DN outputs. T values. In fact, the value computation can be viewed as a
sparse matrix operation with shared parameters that relates these DN quantities
(figure 10.2b)

• Figure 12.2 Legend. Each output is a linear combination of the values, with a
shared the attention weight a[xm ...

• Section 12.3.1 Observant readers will have noticed that the self-attention mecha-
nism discards overlooks important information: the computation is the same re-
gardless does not take into account the order of the inputs xn.

• Section 12.3.1 Changed word to avoid ambiguity: The input to a self-attention
mechanism may be an entire sentence, many sentences, or just a fragment of a
sentence, and the absolute position of a word is much less important than the
relative position between two inputs words. Figure 12.8. Moved the following
sentence from descripton of panel c to the description of panel b to avoid ambiguity:
Note that the last character of the first token to be merged cannot be whitespace,
which prevents merging across words.

• Section 12.6: i.e., the matrices Ωvh,Ωqh,Ωkh are 1024× 64 64× 1024

• Section 12.6. In the fine-tuning stage, the resulting network is adapted to solve a
particular task using a smaller body of supervised labelled training data.

• Figure 12.10 legend: Minor rephrasing to improve clarity. As such, the output
embeddings are passed through a softmax function, and the multiclass classification
loss (section 5.24) is used.→ To this end, the outputs corresponding to the masked
tokens are passed through softmax functions, and a multiclass classification loss
(section 5.24) is applied to each

• Section 12.7.1 Rephrased to avoid ambiguity: GPT3 constructs is an autoregressive
language model.

• Section 12.7.1 Original text is true, but this is a more useful statement given where
we are in the text: The autoregressive formulation demonstrates the connection
between maximizing the log joint probability of the tokens in the loss function and
the next token prediction task

• Section 12.7.1 Slight rephrasing of sentence before equation 12.14. An autore-
gressive model predicts the conditional distributions Pr(tn|t1, . . . , tn−1) of each

Copyright ©2023 Simon Prince.

18

token given all the prior tokens, and hence indirectly computes the joint probabil-
ity Pr(t1, t2, . . . , tN) of all N tokens:

• Section 12.7.2 Added some constructive redundancy: Ideally, we would pass in the
whole sentence and compute all the log probabilities and gradients simultaneously
in the same forward pass rather than doing a forward pass for each token in the
sentence.

• Section 12.7.2 Slight rewording to improve clarity: To train a decoder, we seek pa-
rameters that maximize the log probability of the input text under the autoregres-
sive model (i.e., that maximize the sum of the log conditional probability terms).

• Section 12.7.2: Slightly better: Consequently, after the transformer layers, a sin-
gle linear layer maps each word output embedding to the size of the vocabulary,
followed by a softmax[•] function that converts these values to probabilities.

• Section 12.7.3: The new extended sequence can be fed back into the decoder net-
work that outputs to yield the probability distribution over the next token.

• Section 12.7.3: For example, beam search keeps track of multiple possible sentence
completions to find the overall most likely sequence of words (which is not neces-
sarily found by greedily choosing the most likely next word at each step).

• Section 12.8 Improved first two sentences slightly: Translation between languages
is an example of a sequence-to-sequence task. One common approach uses both an
encoder (to compute a good representation of the source sentence) and a decoder
(to generate the sentence in the target language). This is aptly called an encoder-
decoder model.

• Figure 12.14 Legend. The flow of computation is the same as in standard self-
attention . However, but the queries are calculated from the decoder embeddingsXdec,
and the keys and values from the encoder embeddingsXenc. In the context of trans-
lation For translation tasks, the encoder contains information about the source lan-
guage statistics, and the decoder contains information about the target language
statistics.

• Section 12.10.1 Third paragraph, sentence phrasing changed for improved clarity:
Each pixel’s final embedding is averaged, and a linear layer maps these values to
activations which are passed through a softmax layer to predict class probabilities.

• Section 12.10.2 Fixed minor inaccuracy Each patch is mapped to a lower dimension
an input embedding via a learned linear transformation,

• Section 12.10.3. Reworded paragraph to include references to receptive field: The
Vision Transformer differs from convolutional architectures in that it operates on
a single scale and has a receptive field that covers the whole image. Several trans-
former models that process the image at multiple scales have been proposed. Sim-
ilarly to convolutional networks, these generally start with small high resolution
patches and few channels and gradually enlarge the receptive field, decrease the
spatial resolution and increase the number of channels.

Copyright ©2023 Simon Prince.

19

• Figure 12.18 legend. Added clarification about windows: The transformer network
applies self-attention to the patches within each window independently (i.e., patches
only attend to other patches in the same window).

• Chapter 12 Notes. The synthesizer simplifies this idea by simply

• Figure 13.7 Legend. (i) aggregating the neighboring nodes to form a single vector,
(ii) applying a linear transformation Ω0 to the aggregated nodes vector.

• Figure 13.12 The outputs of the dot-product self-attention mechanism in the trans-
former are also weighted sums of the transformed inputs

• Figure 13.9 Legend. Each node depends on its neighbors in the previous layer.
These, in turn, depend on their neighbors in the layer before, so (similarly to
convolutional networks) each node has a receptive field (figure 13.9). The size of
thereceptive field size is termed the k-hop neighborhood.

• Section 13.8.6 This is very similar to the dot-product self-attention computation in
transformers

• Figure 14.1 Legend. Latent variable models define a mapping between an under-
lying explanatory (latent) variable and the data. Theyand may fall into any of the
above categories.

• Section 14.3. Slightly improvement in clarity to distinguish random variable from
its instantiation. Changed all mentions of Pr(yi|x∗

i) to Pr(y|x∗
i).

• Section 15.2.4: It is a linear programming problem in its primal form:.

• Section 15.2.6: Changed to stop nasty line wrap-over: One way to achieve this is
to clip the discriminator weights to a small range (e.g., ±0.01)

• Figure 15.9: Removed brackets around image sizes for consistency with text.

• Figure 15.11: Changed caption to reflect the fact that multiple tricks have been
used to get good performance here, not just progressive growing. New caption:
“Combining methods. GANs can generate realistic images of faces when trained on
CELEBA-HQ dataset and more complex, variable objects when trained on LSUN
categories.”

• Section 15.5.3 Added marginal reference to ℓ1-norm

• Section 15.6: Figure 15.20 shows examples of manipulating the style and noise
vectors are at different scales

• Chapter 15 Notes on Conditional GANS. Images generated by GANs have variously
been conditioned on classes (e.g.,Odena et al., 2017), input text (Reed et al., 2016a;
Zhang et al., 2017d), attributes (Yan et al., 2016; Donahue et al., 2018a; Xiao et al.,
2018b), bounding boxes and keypoints (Reed et al., 2016b), and images (e.g.,Isola
et al., 2017))

Copyright ©2023 Simon Prince.

20

• Chapter 15. Notes on Adversarial loss. In many image translation tasks, there
is no “generator”; such models these can be considered supervised learning tasks
with an adversarial loss that encourages realism.

• Problem 15.2: Write an equation relating the loss L in equation 15.8 to the Jensen-
Shannon distance DJS [Pr(x∗) || Pr(x)] in equation 15.9.

• Section 16.3.3: If the function g[•,ϕ] is an elementwise flow, the Jacobian will be
lower triangular diagonalwith the identity matrix in the top-left quadrant and the
derivatives of the elementwise transformation in the bottom-right.

• Section 17.1.1 As in equation 17.2, the probability likelihood Pr(x) is given by the
marginalization over the latent variable z

• Section 17.4.2 This is termed the reconstruction loss → This measures the recon-
struction accuracy. (Technically, it’s not a loss since we are maximizing it).

• Chapter 17 Notes. Missing period: Other authors have investigated using a discrete
latent space (Van Den Oord et al., 2017; Razavi et al., 2019b; Rolfe, 2017; Vahdat
et al., 2018a,b).

• Problem 17.7 Derive the EM algorithm for fitting the 1D mixture of Gaussians
algorithm model with N components.

• Equation 18.34 Added brackets to equation:

L[ϕ1...T] =

I∑
i=1

(
− log

[
Normxi

[
f1[zi1,ϕ1], σ

2
1I
]]

+

T∑
t=2

1

2σ2
t

∥∥∥∥(1√
1− βt

zit −
βt√

1− αt

√
1− βt

ϵit

)
− ft[zit,ϕt]

∥∥∥∥2).
• Under Equation 18.36: Added missing equation number in equation after 18.36.

• Figure 18.10 Caption: ...including the denoising diffusion implicit (DDIM) model
(DDIM)

• Chapter 18 notes. One of these models is the denoising diffusion implicit model
(DDIM), in which the updates are not stochastic (figure 10.8bc). This model is
amenable to taking larger steps (figure 10.8de) without inducing large errors.

• Problem 18.1 Show that if Cov[xt−1] = I and we use the update:

xt =
√
1− βt · xt−1 +

√
βt · ϵt,

then Cov[xt] = I, so the variance stays the same.

Copyright ©2023 Simon Prince.

21

• Chapter 19 introduction: In finance, an RL algorithm might control a virtual trader
(the agent) who buys or sells assets (the actions) on a trading platform financial
exchange (the environment) to maximize profit (the reward).

• Section 19.1.5 Minor reprhrasing: The environment then assigns advances to the
next state according to Pr(st+1|st, at) and issues a reward according to Pr(rt+1|st, at).

• Figure 19.3 legend. Slight rephrasing to improve clarity: The agent (penguin)
can perform one of a set of actions in each state. The action influences both the
probability of moving to the successor state and the probability of receiving re-
wards. b) Here, the four actions correspond to moving up, right, down, and left.
c) For any state (here, state 6), the action changes the probability of moving to
the next state. The penguin moves in the intended direction with 50% probability,
but the ice is slippery, so it may slide to one of the other adjacent positions with
equal probability. Accordingly, in panel (a), the action taken (gray arrows) doesn’t
always line up with the trajectory (orange line). Here, In general, the action can
also influence the probability of receiving rewards, but in this example the action
does not affect the reward...

• Figure 19.4. Slight rephrasing for clarity: Here, the penguin is in state three and
can only see the region in the dashed box tiles in the vicinity (dashed box).

• Section 19.1.3 Rephrase for clarity: An MDP produces a sequence (s1, a1, r2), (s2, a2, r3), (s3, a3, r4) . . .
of states st, actions at, and rewards rt+1 which are received at the subsequent time-
step (figure 19.3).

• Section 19.3. Added footnote for ”Model-based methods”: The term model refers
here to the MDP and not a machine learning model.

• Section 19.3 Reworded to avoid ambiguity. Conversely, model-free methods eschew
a model of the MDP and fall into two classes assume that the transition matrix
and reward structure of the underlying MDP are unknown. These methods fall
into two families:

• Section 19.3.2. Not wrong, but clearer with these tweaks: Each starts with a given
state and action and thereafter follows the current policy, producing a series of
actions, states, and returns rewards (figure 2.11a). The action value for a given
state-action pair under the current policy is estimated as the average of the em-
pirical returns (i.e., cumulative sums of time-discounted rewards) that follow each
time this pair occurs (figure 2.11b).

• Figure 19.10b: Tweaked four of the values as had rounded oddly in computation.

• Figure 19.11c: Policy in cell 12 should not be updated (arrow should still point
upwards). We have not performed the “down arrow” action, so we can’t change
this.

• Section 19.3.3 Changed tense for internal consistency: Monte Carlo methods sam-
pled the MDP to acquire information.

Copyright ©2023 Simon Prince.

22

• Figure 19.14: Input should be tagged as having size 84× 84× 4.

• Section 19.4.2: ...leads to a systematic bias in the estimated action values q[st, at].

• Equation 19.30: Changed for compatibility with earlier definition of reward:

r[τ i] =

T∑
t=1

ri,t+1 =

t∑
k=1

ri,k+1 +

T∑
k=t

ri,k+1,

• Equation 19.31: Changed for compatibility with earlier definition of reward:

θ ← θ + α · 1
I

I∑
i=1

T∑
t=1

∂ log
[
π[ait|sit,θ]

]
∂θ

T∑
k=t

ri,k+1.

• Equation 19.32: Changed for compatibility with earlier definition of reward:

r[τ it] =

T∑
k=t+1

γk−t−1ri,k+1,

• Section 19.5.3 One way to reduce this variance is to subtract the trajectory re-
turns r[τ] from a baseline b a baseline b from the trajectory returns r[τ]:

• Equation 19.39: Changed for compatibility with earlier definition of reward:

L[ϕ] =

I∑
i=1

T∑
t=1

v[sit,ϕ]−
T∑

j=t

ri,j+1

2

.

• Equation 19.40: Changed for compatibility with earlier definition of reward:

r[τ it] ≈ ri,t+1 + γ · v[si,t+1,ϕ].

• Equation 19.41: Changed for compatibility with earlier definition of reward:

θ ← θ + α · 1
I

I∑
i=1

T∑
t=1

∂ log
[
Pr(ait|sit,θ)]

]
∂θ

(
ri,t+1 + γ · v[si,t+1,ϕ]− v[si,t,ϕ]

)
.

• Equation 19.42: Changed for compatibility with earlier definition of reward:

L[ϕ] =

I∑
i=1

T∑
t=1

(ri,t+1 + γ · v[si,t+1,ϕ]− v[si,t,ϕ])
2
.

• Figure 19.18 Legend. One trajectory through an MDP MRP

Copyright ©2023 Simon Prince.

23

• Problem 19.1 Figure 19.18 shows a single trajectory through the example MDP an
example MRP

• Problem 19.3 Added clarification that discount value is 0.9

• Section 20.12 if each of the 40 inputs of the MNIST-1D data were quantized into
10 possible values, there would be 1040 possible inputs, which is a factor of 1035

1036 more than the number of training examples.

• Section 20.12 A fully connected network for MNIST-1D with two hidden layers of
width 400 can create mappings with up to 1042 linear regions. That’s roughly 1037

1038 regions per training example, so very few of these regions contain data at any
stage during training;

• Figure 21.1 Caption Structural description of the value alignment problem. a)
Problems arise from a) misaligned objectives (e.g., bias) or b) informational asym-
metries between a (human) principal and an (artificial) agent (e.g., lack of explain-
ability).

• Section B.3.2 Minor clarification: For a vector z, the ℓp norm is defined as:

||z||p =

(
D∑

d=1

|zd|p
)1/p

, (1.10)

for real-valued p > 1.

• Section C.2.1 Added missing equation numbers

• Section C.3.3 Added missing equation number

• Figure C.4 When the covariance matrix is a multiple of the diagonal identity matrix,
the isocontours are circles, and we refer to this as spherical covariance.

• Section C.4.2. Consider a joint distribution Pr(x, y, z) over three variables, x, y,
and z, which in this particular case factors as:

Second and third printings (Mar 2024)

These are things that are wrong and need to be fixed, but that will probably not affect
your understanding (e.g., math symbols that are in bold but should not be).

• Section 1.1: ...and what is meant by “training” a model.

• Figure 1.13: Adapted from Pablok (2017).

Copyright ©2023 Simon Prince.

24

• Figure 2.3 legend: Each combination of parameters ϕ = [ϕ0,ϕ1]
T .

• Section 2.3: 1D linear regression has the obvious drawback

• Figure 3.5 legend: The universal approximation theorem proves that, with enough
hidden units, there exists a shallow neural network that can describe any given
continuous function defined on a compact subset of RDi to arbitrary precision.

• Notes page 38 Most of these are attempts to avoid the dying ReLU problem while
limiting the gradient for negative values.

• Figure 4.1 legend: The first network maps inputs x ∈ [−1, 1] to outputs y ∈
[−1, 1] using a function comprising three linear regions that are chosen so that they
alternate the sign of their slope (fourth linear region is outside range of graph).

• Figure 4.2: Colors changed to avoid ambiguity

• Equation 4.13 is missing a prime sign:

h = a [θ0 + θx]

h′ = a [ψ0 +Ψh]

y′ = ϕ′
0 + ϕ

′h′,

• Equation 4.14: ϕ′
0 should not be bold.

y = ϕ′
0 + ϕ

′h′

• Equation 4.17 is not technically wrong, but the product is unnecessary and it’s
unclear if the last term should be included in it (no). Better written as:

Nr =

(
D

Di
+ 1

)Di(K−1)

·
Di∑
j=0

(
D

j

)
.

• Equation 5.10. Second line is disambiguated by adding brackets:

ϕ̂ = argmin
ϕ

[
−

I∑
i=1

log

[
1√
2πσ2

exp

[
− (yi − f[xi,ϕ])

2

2σ2

]]]

= argmin
ϕ

[
−

I∑
i=1

(
log

[
1√
2πσ2

]
− (yi − f[xi,ϕ])

2

2σ2

)]

= argmin
ϕ

[
−

I∑
i=1

− (yi − f[xi,ϕ])
2

2σ2

]

= argmin
ϕ

[
I∑

i=1

(yi − f[xi,ϕ])
2

]
,

Copyright ©2023 Simon Prince.

25

• Equation 5.12. More properly written as:

ŷ = argmax
y

[
Pr(y|f[x, ϕ̂, σ2])

]
. (1.11)

although the value of σ2 does not actually matter or change the position of the
maximum.

• Equation 5.15. Disambiguated by adding brackets:

ϕ̂ = argmin
ϕ

[
−

I∑
i=1

(
log

[
1√

2πf2[xi,ϕ]2

]
− (yi − f1[xi,ϕ])

2

2f2[xi,ϕ]2

)]
.

• Section 5.5 The likelihood that input x has label y = k (figure 5.10) is hence:

• Section 5.6 Removed i index from this paragraph for consistency. Independence
implies that we treat the probability Pr(y|f[x,ϕ]) as a product of univariate terms
for each element yd ∈ y:

Pr(y|f[x,ϕ]) =
∏
d

Pr(yd|fd[x,ϕ]),

where fd[x,ϕ] is the d
th set of network outputs, which describe the parameters of the

distribution over yd. For example, to predict multiple continuous variables yd ∈
R, we use a normal distribution for each yd, and the network outputs fd[x,ϕ]
predict the means of these distributions. To predict multiple discrete variables yd ∈
{1, 2, . . . ,K}, we use a categorical distribution for each yd. Here, each set of network
outputs fd[x,ϕ] predicts theK values that contribute to the categorical distribution
for yd.

• Problem 5.8. Construct a loss function for making multivariate predictions y∈ RDi

based on independent normal distributions. . .

• Notes page 94. However, this is strange since SGD is a special case of Adam
(when β = γ = 0)

• Section 7.3. The final derivatives from the term f0 = β0 + ω0 · xi are:

• Section 7.4. Similarly, the derivative for the weights matrix Ωk, is given by

• Section 7.5.1 and the second moment E[h2
j] will be half the variance σ2

f

• Figure 7.8. Not wrong, but changed to “nn.init.kaiming normal (layer in.weight)”
for compatability with text and to avoid deprecated warning.

• Section 8.3.3 (i.e., with four hidden units and four linear regions in the range of
the data) + minor changes in text to accommodate extra words

• Figure 8.9 number of hidden units / linear regions in range of data

Copyright ©2023 Simon Prince.

26

Corrected version of figure 10.8

• Section 8.4.1 When the number of parameters is very close to the number of training
data examples (figure 8.11b)

• Figure 9.5 legend: Effect of learning rate (LR) and batch size for 4000 training and
4000 test examples from MNIST-1D (see figure 8.1) for a neural network with two
hidden layers. a) Performance is better for large learning rates than for intermediate
or small ones. In each case, the number of iterations is 6000/LR, so each solution
has the opportunity to move the same distance.

• Figure 10.3. The dilation rates are wrong by one, so should be 1,1,1, and 2 in
panels a,b,c,d, respectively.

• Section 10.2.1 Not wrong, but could be disambiguated: The size of the region over
which inputs are combined is termed the kernel size.

• Section 10.2.3 The number of zeros we intersperse between the weights determines
the dilation rate.

• Section 10.2.4 With kernel size three, stride one, and dilation rate one.

• Section 10.2.7 The convolutional network has 2,050 parameters, and the fully con-
nected network has 59,065 parameters.

• Figure 10.8 Number of parameters also wrong in figure 10.8 (correct version in this
document). Recalculated curve is slightly different.

• Section 10.5.3 The first part of the network is a smaller version of VGG (fig-
ure 10.17) that contains thirteen rather than sixteen convolutional layers.

• Section 10.6 The weights and the bias are the same at every spatial position, so
there are far fewer parameters than in a fully connected network, and the number
of parameters doesn’t increase with the input image size.

• Problem 10.1 Show that the operation in equation 10.3 is equivariant with respect
to translation.

• Problem 10.2 Equation 10.3 defines 1D convolution with a kernel size of three,
stride of one, and dilation one.

Copyright ©2023 Simon Prince.

27

• Problem 10.3 Write out the equation for the 1D dilated convolution with a kernel
size of three and a dilation rate of two.

• Problem 10.4 Write out the equation for a 1D convolution with kernel size of seven,
a dilation rate of three, and a stride of three.

• Problem 10.9 A network consists of three 1D convolutional layers. At each layer,
a zero-padded convolution with kernel size three, stride one, and dilation one is
applied.

• Problem 10.10 A network consists of three 1D convolutional layers. At each layer,
a zero-padded convolution with kernel size seven, stride one, and dilation one is
applied.

• Problem 10.11 Consider a convolutional network with 1D input x. The first hidden
layer H1 is computed using a convolution with kernel size five, stride two, and a
dilation rate of one. The second hidden layer H2 is computed using a convolution
with kernel size three, stride one, and a dilation rate of one. The third hidden
layer H3 is computed using a convolution with kernel size five, stride one, and a
dilation rate of two. What are the receptive field sizes at each hidden layer?

• Legend to figure 11.15. Computational graph for batch normalization (see prob-
lem 11.5).

• Section 12.2: Not a mistake, but this is clearer: where βv∈ RD × 1 and Ωv∈ RD×D

represent biases and weights, respectively.

• Section 12.3.3 to make self-attention work well

• Section 12.4 Title changed to Transformer layers

• Section 12.4 a larger transformer mechanism

• Section 12.4 a series of these transformer layers ...

• Section 12.5 The previous section described the transformer layer... a series of
transformer layers...

• Figure 12.8 legend: The transformer → Transformer layer...The transformer layer
consists

• Figure 12.8 has some minor mistakes in the calculation. The corrected version is
shown at the end of this document.

• Figure 12.8 legend. At each iteration, the sub-word tokenizer looks for the most
commonly occurring adjacent pair of tokens

• Section 12.5.3 a series of K transformer layers

• Section 12.6 through 24 transformer layers

Copyright ©2023 Simon Prince.

28

...

Corrected version of figure 15.3

• Section 12.6 in the fully connected networks in the transformer is 4096

• Figure 12.10 legend: a series of transformer layers

• Section 12.7.2 the transformer layers use masked...

• Figure 12.12 are passed through a series of transformer layers... and those of tokens
earlier

• Section 12.7.4 There are 96 transformer layers

• Section 12.7 comprises a series of transformer layers

• Section 12.8 Originally, these

• Section 12.8 a series of transformer layers... a series of transformer layers

• Section 13.5.1 Given I training graphs {Xi,Ai} and their labels yi, the parame-
ters Φ = {βk,Ωk}Kk=0 can be learned using SGD...

• Figure 15.3 legend: At the end is a tanh function that maps the...

• Figure 15.3 arctan → tanh. Corrected version nearby in this document.

• Section 15.1.3: At the final layer, the 64×64×3 signal is passed through a tanh
function to generate an image x∗

• Equation 15.6. Minor problems with brackets in this equation. Should be:

L[ϕ] =
1

J

J∑
j=1

(
log
[
1− sig[f[x∗

j ,ϕ]]
])

+
1

I

I∑
i=1

(
log
[
sig[f[xi,ϕ]]

])

≈ Ex∗

[
log
[
1− sig[f[x∗,ϕ]]

]]
+ Ex

[
log
[
sig[f[x,ϕ]]

]]
=

∫
Pr(x∗) log

[
1− sig[f[x∗,ϕ]]

]
dx∗ +

∫
Pr(x) log

[
sig[f[x,ϕ]]

]
dx.

Copyright ©2023 Simon Prince.

29

• Equation 16.2 (last line). For some reason, this didn’t print properly, although it
looks fine in my original pdf. Should be:

ϕ̂ = argmax
ϕ

[
I∏

i=1

Pr(xi|ϕ)

]

= argmin
ϕ

[
I∑

i=1

− log
[
Pr(xi|ϕ)

]]

= argmin
ϕ

[
I∑

i=1

log

[∣∣∣∣∂f[zi,ϕ]∂zi

∣∣∣∣
]
− log

[
Pr(zi)

]]
,

• Equation 16.25. ϕ should change to ϕ̂ on left hand side. Correct version is:

ϕ̂ = argmin
ϕ

[
KL

[
I∑

i=1

δ
[
x− f[zi,ϕ]

]∣∣∣∣∣∣∣∣q(x)
]]

.

• Equation 16.26. ϕ should change to ϕ̂ on left hand side. Correct version is:

ϕ̂ = argmin
ϕ

[
KL

[
1

I

I∑
i=1

δ[x− xi]

∣∣∣∣∣∣∣∣Pr(xi,ϕ)

]]
.

• Equation 18.24 has a minor formatting mistake. Better written as:

log

[
Pr(x, z1...T |ϕ1...T)

q(z1...T |x)

]
= log

[
Pr(x|z1,ϕ1)

q(z1|x)

]
+ log

[∏T
t=2 Pr(zt−1|zt,ϕt) · q(zt−1|x)∏T

t=2 q(zt−1|zt,x) · q(zt|x)

]
+ log

[
Pr(zT)

]
= log [Pr(x|z1,ϕ1)] + log

[∏T
t=2 Pr(zt−1|zt,ϕt)∏T
t=2 q(zt−1|zt,x)

]
+ log

[
Pr(zT)

q(zT |x)

]

≈ log [Pr(x|z1,ϕ1)] +

T∑
t=2

log

[
Pr(zt−1|zt,ϕt)

q(zt−1|zt,x)

]
,

• Equation 18.34 missing indices on noise term:

L[ϕ1...T] =

I∑
i=1

− log
[
Normxi

[
f1[zi1,ϕ1], σ

2
1I
]]

(1.12)

+

T∑
t=2

1

2σ2
t

∥∥∥∥(1√
1− βt

zit −
βt√

1− αt

√
1− βt

ϵit

)
− ft[zit,ϕt]

∥∥∥∥2 .
Copyright ©2023 Simon Prince.

30

• Section 20.2.2 Another possible explanation for the ease with which models are
trained is that some regularization methods like L2 regularization (weight decay)
make the loss surface flatter and more convex.

• Section 20.2.4 For example, Du et al. (2019a) show that residual networks converge
to zero training loss when the width of the network D (i.e., the number of hidden
units) is Ω[I4K2] where I is the amount of training data, and K is the depth of
the network.

• Section 21.7 the Conference on AI, Ethics, and Society

• Appendix A. The notation {0, 1, 2, . . .} denotes the set of non-negative integers.

• Appendix A ...big-O notation, which represents an upper bound...

• Appendix A. f[n] < c·g[n] for all n > n0

• Equation B. 18

y1 = ϕ10 + ϕ11z1 + ϕ12z2 + ϕ13z3

y2 = ϕ20 + ϕ21z1 + ϕ22z2 + ϕ23z3

y3 = ϕ30 + ϕ31z1 + ϕ32z2 + ϕ33z3. (1.13)

• Appendix C.5.4 Accent in wrong place: The Fréchet and Wasserstein distances...

• Equation C.32.

DKL

[
Norm[µ1,Σ1]

∣∣∣∣∣∣Norm[µ2,Σ2]
]

=

1

2

(
log

[
|Σ2|
|Σ1|

−D + tr
[
Σ−1

2 Σ1

]
+ (µ2 − µ1)Σ

−1
2 (µ2 − µ1)

])
.

First printing (Dec 2023)

These are things that are wrong and need to be fixed, but that will probably not affect
your understanding (e.g., math symbols that are in bold but should not be).

• Section 1.1.1: In contrast, the model in figure 1.2b takes the chemical structure of
a molecule as an input and predicts both the freezing and boiling points.

• Figure 1.2 legend: This multivariate regression model takes the structure of a
chemical molecule and predicts its freezing and boiling points.

Copyright ©2023 Simon Prince.

31

Corrected version of figure 12.8

• Section 1.1.2: Finally, consider the input for the model that predicts the freezing
and boiling points of the molecule. A molecule may contain varying numbers of
atoms that can

• Multiple places in Chapters 2-9. Loss functions L[ϕ] sometimes written as L[ϕ].
Have now all been converted to italic for consistency.

• Section 3.1.1 The slope of each linear region is determined by (i) the original
slopes θ•1 of the active inputs for this region and (ii) the weights ϕ• that were
subsequently applied.

• Section 4.5.5 Added missing definition of over-parameterization and other minor
changes for typesetting consistence: It may be that over-parameterized deep models
(i.e., those with more parameters than training examples) have a large family...

• Chapter 4 Notes, page 52. Montúfar

• Problem 4.7: Choose values for the parameters ϕ = {ϕ0, ϕ1, ϕ2, ϕ3, θ10, θ11, θ20, θ21, θ30, θ31}
for the shallow neural network in equation 3.1 (with ReLU activation functions)

Copyright ©2023 Simon Prince.

32

that will define an identity function over a finite range x ∈ [a, b].

• Problem 4.11: How many parameters does each network have? How many linear
regions can each network make (see equation 4.17)?

• Problem 5.1 Reworded to be more precise with limits: Show that the logistic sig-
moid function sig[z] becomes 0 as z → −∞, is 0.5 when z = 0, and becomes 1
when z →∞.

• Problem 5.3: The term Bessel0[κ] is a modified Bessel function of the first kind of
order 0.

• Problem 5.8: Construct a loss function for making multivariate predictions y ∈ RDo

based on...

• Figure 7.4 legend: We work backward from the end of the function computing
the derivatives ∂ℓi/∂fk and ∂ℓi/∂hk of the loss with respect to the intermediate
quantities.

• Section 7.3 Finally, we consider how the loss ℓi changes when we change the pa-
rameters {βk} and {ωk}.

• Figure 7.5 legend: Finally, we compute the derivatives ∂ℓi/∂βk and ∂ℓi/∂ωk

• Problem 7.13 For the same function as in problem 7.12, compute the derivative...

• Equation 8.2:

L[x] =
(
f[x,ϕ]− y[x]

)2
(1.14)

=
((

f[x,ϕ]− µ[x]
)
+
(
µ[x]− y[x]

))2
=

(
f[x,ϕ]− µ[x]

)2
+ 2
(
f[x,ϕ]��CC)− µ[x]

)(
µ[x]− y[x]

)
+
(
µ[x]− y[x]

)2
,

• Section 8.4.1 There would be 1040 bins in total, constrained by only 104 examples.

• Equation 9.6 LHS should be total derivative, not partial derivative:

dϕ

dt
= −∂L

∂ϕ
. (1.15)

• Figure 9.4 Added to legend for panel (a) Blue point represents global minimum.
Added to legend for panel (d) Blue point represents global minimum which may
now be in a different place from panel (a).

• Figure 9.9 legend Here we are using full-batch gradient descent, and the model
(from figure 8.4) fits the data as well as possible, so further training won’t remove
the kink

• Figure 9.9 legend Consider what happens if we remove the eighth hidden unit

Copyright ©2023 Simon Prince.

33

• Figure 9.11 legend: a-c) Two sets of parameters (cyan and gray curves) sampled
from the posterior

• Figure 9.11 legend When the prior variance σ2
ϕ is small

• Equation 9.15 Should be total derivative not partial:

dϕ

dt
= g[ϕ]. (1.16)

• Equation 9.16 Should be total derivative not partial:

dϕ

dt
≈ g[ϕ] + αg1[ϕ] + . . . , (1.17)

• Equation 9.17 Should be total derivative not partial:

ϕ[α] ≈ ϕ+ α
dϕ

dt
+

α2

2

d2ϕ

dt2

∣∣∣∣
ϕ=ϕ0

≈ ϕ+ α (g[ϕ] + αg1[ϕ]) +
α2

2

(
∂g[ϕ]

∂ϕ

dϕ

dt
+ α

∂g1[ϕ]

∂ϕ

dϕ

dt

)∣∣∣∣
ϕ=ϕ0

= ϕ+ α (g[ϕ] + αg1[ϕ]) +
α2

2

(
∂g[ϕ]

∂ϕ
g[ϕ] + α

∂g1[ϕ]

∂ϕ
g[ϕ]

)∣∣∣∣
ϕ=ϕ0

≈ ϕ+ αg[ϕ] + α2

(
g1[ϕ] +

1

2

∂g[ϕ]

∂ϕ
g[ϕ]

)∣∣∣∣
ϕ=ϕ0

, (1.18)

• Equation 9.19 Should be total derivative not partial:

dϕ

dt
≈ g[ϕ] + αg1[ϕ]

= −∂L

∂ϕ
− α

2

(
∂2L

∂ϕ2

)
∂L

∂ϕ
. (1.19)

• Page 156 Notes: Wrong marginal reference — Appendix B.3.7 Spectral Norm

• Figure 10.3 legend – In dilated or atrous convolution (from the French “à trous” –
with holes), we intersperse zeros in the weight vector...

• Section 10.5.1 A final max-pooling layer yields a 6×6 representation with 256 chan-
nels which is resized into a vector of length 9, 216 and passed through three fully
connected layers containing 4096, 4096, and 1000 hidden units, respectively.

• Section 10.5.1 The complete network contains ∼60 million parameters, most of
which are in the fully connected layers and the end of the network.

Copyright ©2023 Simon Prince.

34

• Problem 10.4 Write out the equation for a 1D convolution with kernel size of seven,
a dilation rate of three, and a stride of three. You may assume that the input is
padded with zeros at positions x−2, x−1 and x0.

• Equation 11.3: Terms should be reordered to be consistent with definition of vector
derivative in appendix:

∂y

∂f1
=

∂f2
∂f1

∂f3
∂f2

∂f4
∂f3

. (1.20)

• Equation 11.6: Terms should be reordered to be consistent with definition of vector
derivative in appendix:

∂y

∂f1
= I+

∂f2
∂f1

+

(
∂f3
∂f1

+
∂f2
∂f1

∂f3
∂f2

)
+

(
∂f4
∂f1

+
∂f2
∂f1

∂f4
∂f2

+
∂f3
∂f1

∂f4
∂f3

+
∂f2
∂f1

∂f3
∂f2

∂f4
∂f3

)
,

(1.21)

• Equation 11.10:

f1 = E[zi]
f2i = zi − f1

f3i = f2
2i

f4 = E[f3i]

f5 =
√

f4 + ϵ

f6 = 1/f5

f7i = f2i × f6

z′i = f7i × γ + δ,

(1.22)

• Figure 12.10 legend: A small fraction of the input tokens are randomly replaced
with...

• Section 12.2.1 Not technically wrong, but for consistency with previous and fol-
lowing sections: Equation 12.2 shows that the same weights Ωv ∈ RD×D and
biases βv ∈ RD are applied to each input x• ∈ RD...

• Section 12.2.1 Not technically, wrong, but for consistency with previous and fol-
lowing sections: It follows that the number of attention weights has a quadratic
dependence on the sequence length N , but is independent of the length D of each
input ��x• .

• Section 12.3.1 Each element of the attention matrix corresponds to a particular
offset between key position a and query position b.

• Section 12.3.2 title: Scaled dot-product self-attention

• Section 12.3.2 This is known as scaled dot-product self-attention.

• Problem 12.1 How many weights and biases would there be in a fully connected
shallow network relating all DN inputs to all DN outputs?

• Notes Page 236 Much subsequent work has modified just the attention matrix so
that in the scaled dot-product self-attention equation:

Copyright ©2023 Simon Prince.

35

• Problem 12.10: Extra bracket removed:

a[xm,xn] = softmaxm
[
kT
• qn

]
=

exp
[
kT
mqn

]∑N
m′=1 exp

[
kT
m′qn ��CC)

] . (1.23)

• Figure 13.10 Right hand column should be labelled as “output” not “hidden layer
two”. item Equation 13.22

H′
k = βk1

T +ΩkHk. (1.24)

• Section 15.1 A single new sample x∗
j is generated by (i) choosing a latent variable zj

from a simple base distribution (e.g., a standard normal) and then (ii) passing this
data through a network xj

∗ = g[zj ,θ] with parameters θ

• Section 15.2.1 If we divide the two sums in the first line of equation 15.5 by the
numbers...

• Section 15.2.1 When I = J , the optimal discriminator for an example x̃ of unknown
origin is:

• Equation 16.12:

f[h,ϕ] =

(
b−1∑
k=1

ϕk

)
+ (hK − b)ϕb, (1.25)

• Equation 16.25:

ϕ̂ = argmin
ϕ

[
KL

[
1

I

I∑
i=1

δ
[
x− f[zi,ϕ]

]∣∣∣∣∣∣∣∣q(x)
]]

. (1.26)

• Section 16.2 The first term is the inverse of the determinant of the D×D Jacobian
matrix ∂f[z,ϕ]/∂z, which contains elements ∂fi[z,ϕ]/∂zj at position (i, j).

• Section 17.5 we can’t evaluate the evidence term Pr(x|ϕ) in the denominator (see
section 17.3).

• Equation 17.28 Brackets in third line now larger.

• Section 18.2 This is a Markov chain because the probability of zt is determined
entirely by the value of the immediately preceding variable zt−1.

• Section 18.6.1 The obvious architectural choice for this image-to-image mapping is
the U-Net (figure 11.10).

• Section 19.7 Hence, the decision transformer replaces the reward rt with the returns-
to-go Rt:T =

∑T
t′=t rt′ (i.e., the sum of the empirically observed future rewards).

• Section 19.1.2 Rephrased as ambiguous: A Markov reward process extends the
Markov process to include a distribution Pr(rt+1|st) over the possible rewards rt+1

received at the next time step, given that we are in state st.

Copyright ©2023 Simon Prince.

36

• Section 20.5.1 In general, the smaller the model, the larger the proportion of weights
that can... Note that this statement is only true for pure pruning methods, and
not for lottery tickets where the pruned network is retrained from scratch, and so
it has been removed.

• Section C.2.1 Rule 2:

E
[
k · f[x]

]
=

∫
k · f[x]Pr(x)dx

= k ·
∫

f[x]Pr(x)dx

= k · E
[
f[x]
]
.

• Section C.5.4 Reformulated to reflect the fact that the Fréchet/ and 2-Wasserstein
distances are the same:

The Fréchet/2-Wasserstein distance is given by:

D2
Fr/W2

[
Norm[µ1,Σ1]

∣∣∣∣∣∣Norm[µ2,Σ2]
]
= |µ1 − µ2|2 + tr

[
Σ1 +Σ2 − 2 (Σ1Σ2)

1/2
]
.

(1.27)

Copyright ©2023 Simon Prince.

